update on D0 reco. using micro-vertex code

J. Bouchet
J.Joseph
M. Slivinsky (summer student)

datasets

- mix D0 sample :
 - I D0 embedded in Cu+Cu event, 280 files with 400 events
 - = $|z_{vertex}| < 30$ cm (20 cm in the analysis)
 - defaults cuts in macro (applied to positive and negative tracks):
 - NTpc > 15
 - $|\eta|$ in SSD acceptance, ie $|\eta| < 1.2$
 - pT > 0.1 GeV/c
 - Decay length < 700 μm
- real data : Cu+Cu@200 GeV Min bias (P07ic)
 - look only for a fraction of these files
 - $|z_{vertex}| < 20$ cm in the analysis

some issues

- Background rotation calculation
- Cut on the number of tracks per event
- Cut on D0 daughters momentum
- → NSigma for dEdx values ?

Background rotation

- for each (positive,negative) association, rotation of π of the positive daughter
- recalculate the corresponding mass
- it leads to a not "perfect background", then the substraction of true-fake D0 is over-estimated

mix sample

Modification

- try another value than π : same results
- try random rotation in 2π for both daughters : same results
- rotation of π + TMath::Gaussian(π ,0.25)

• In the following plots, we tried 3 cuts: number of TPC hits, number of silicon hits, number of tracks per event (done with a sample of the files available)

Fixed rotation

all associations

background

Fixed rotation (zoom)

all associations

background

Fixed rotation: substraction

Fixed rotation: substraction(zoom)

it seems to work better with the cut on the number of tracks per event

random rotation

random rotation: substraction

gaussian rotation

gaussian rotation: substraction

gaussian rotation (all files)

gaussian rotation: substraction (all files)

Number of tracks per event (mix data)

D0 daughters momentum

dEdx vs p (real data)

real data (180k events)

summary, to do

- Backgound rotation of π with a gaussian smear seems to work better
- dependence with the number of tracks per events
- dependence with the momentum of daughters
- cuts on nSigma of dEdx in real data?